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Final Report

1. Problem Statement

Under monotonically increasing compressive loading, polycrystalline ice undergpcs a transition from ductile
to brittle behavior upon increasing the strain rate to above a critical level. Correspondingly, the dependence of the
failure stress on the strain rate changes from strongly positive to weakly negative; i.e., from strain rate hardening
to moderate strain rate softening. Also, upon reaching the transition, the failure stress becomes dependent upon
grain size, increasing as the grain size decreases. These characteristics indicate that different deformation
mechanisms operate on either side of the transition. They indicate further that the transition marks the point at
which the ice reaches its highest strength. In practical terms the ductile-to-brittle transition sets the maximum force
a moving ice cover (€.g., on a river) exerts against an obstacle (e.g., a bridge pier).

The problem, therefore, is to understand the origin of this transition.

To this end a systematic experimental investigation was carried out at -10°C on columnar, fresh-water ice.
The work was guided by the hypothesis that the transition occurs when cracks, nucleated during loading, begin to
propagate.

2. Most Significant Results:

1. Under uniaxial compressive loading across the columns, grain boundaries crack when inclined to the
loading direction. From these "parent"” cracks extensions form along the loading direction. These extensions are
termed wing cracks. Wing cracks form on both sides of the transition. Under increasing stress at strain rates
above the transition rate, the wings lengthen in a stable manner and eventually split the material into a number of
rather crack-free pieces. The wing cracks do not propagate under increasing stress at strain rates on the ductile
side of the transition. The hypothesis is thus verified.

2. Crack-tip creep suppresses wing crack growth. For instance, crack growth can be stopped by holding a
wing crack under constant stress for a sufficiently long time.

3. The transition strain rate increases with decreasing grain size and is consistent with functionality of the
form (grain size)-3/2.

4. These results can be explained in terms of the competition between the build-up and the relaxation of
stresses at the tips of the wing cracks. At high strain rates the build-up dominates and the cracks propagate. At
low strain rates the relaxation dominates and the cracks are "blunted”. The transition strain rate, £pg, can thus
be modeled by incorporating the crack size (which is set by the grain size, d) and the resistance to creep, to
fracture and to frictional sliding across the surface of the inclined, parent crack. Accordingly,

P 4ZBK

DIB = 3mf(1-p)d™"
where Z is a dimensionless constant, B is the co-efficient from the power law describing secondary creep (€ =
Bo3) Kc is the critical stress intensity factor for mode-I crack growth, W is the co-efficient of sliding frictior for
ice on ice and f is size of the creep zone relative to the parent crack.

A detailed description of the above work may be obtained from the papers listed below.

5. The experiments have also revealed that the transition strain rate depends upon confinement. Under
biaxial loading across the columnar grains, £p, g first increases and then decreases with increasing confinement.
This effect is reported in Progress Reports S and 6. It will be explored further at a later date. Meanwhile, the
effect is being analyzed.
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